Addendum, Cars, physics, Space, thought experiment

Addendum: A City On Wheels

While I was proofreading my City on Wheels post, I realized that I’d missed a golden opportunity to estimate just how heavy a whole city would be. When I was writing that post, I wanted to use the Empire State Building’s weight as an upper limit, because I was pretty sure that would be enough space for a whole self-sufficient community. Trouble is, the weight of buildings isn’t usually known. The Empire State Building’s weight is cited here and there, but never with a very convincing source. I couldn’t figure out a way to estimate its weight that didn’t feel like nonsense guesswork. That’s why I used the Titanic’s displacement as my baseline.

The reason estimating the mass of a building was so tricky is that, generally, buildings are far form standardized. Yeah, a lot of houses are built in similar or identical styles, but even if you know their exact dimensions, converting that into a reasonably accurate weight turns into pure guesswork, because you don’t know what kind of wood was used in the frame, how much moisture the wood contained, how many total nails were used, et cetera. But, just now, I realized something. There is a standardized object that represents the shape, size, and weight of a dwelling pretty well: the humble shipping container.

31-shipping-container-house-01-850x566

You may notice that that’s not a shipping container. It’s a bunch of shipping containers put together to make a rather stylish (if slightly industrial-looking) house. Building homes out of shipping containers is a big movement in the United States right now. They’re cheaper than a lot of alternatives, and they’re tough: shipping containers are built to be stacked high, even while carrying full loads. For example:

cscl_globe_arriving_at_felixstowe_united_kingdom

The things are sturdy enough that they far exceed most building codes, when properly anchored. Their low price, their strength, and the fact that they’re easily combined and modified, has made them popular as alternative houses.

Because different shipping containers from different manufacturers and different countries often end up stacked together, they all have to be built to the same standard. Their dimensions, therefore, are standardized, which is good news for us. I re-imagined the rolling city as a stack of shipping containers approximately the size of the Titanic, with their long axes perpendicular to the ship’s long axis. You could fit two across the Titanic‘s deck this way, and 110 along the deck, and if you stacked them 20 high, you’d approximate the Titanic’s shape and volume. To account for the fact that the people living in these containers are going to have furniture, pets, physical bodies, and other inconvenient stuff, I’ll assume that each container would have twelve pieces of the heaviest furniture I could think of: the refrigerator.

Amazon is a great thing for this kind of estimation, because from it, I learned that an ordinary Frigidaire is about 300 pounds. Multiply that by twelve, add the mass of the container itself (3.8 metric tons each), round up (to keep estimates pessimistic), and you get 6 metric tons per container. Considering that a standard 40-foot intermodal container (which is the standard I worked with) can handle a gross weight (container + cargo) of over 28 metric tons, we’re nowhere near the load limit for the containers. There are 4,400 containers in all, for a total mass of 26,400 metric tons. Increase the mass by 25% to account for the weight of the nuclear reactor, chassis, and suspension, and we get 33,000 metric tons. That’s still a hell of a lot, but it’s only just over half of the 50,000 tonnes we were working with before.

As you might remember, I wrote off the Titanic-based city on wheels as probably feasible, but requiring a heroic effort and investment. But using the shipping container mass, which is 1.5-fold smaller, I think it moves into the “impressive but almost sensible mega-project” category, along with the Golden Gate Bridge, the Burj Khalifa, the Great Pyramid of Giza, and Infinite Jest.

Another note: There’s one heavy, mobile object whose weight I didn’t mention in the City on Wheels post: the Saturn V rocket. I did mention the Crawler-Transporter that moved the Saturn V from the Vehicle Assembly Building to the launchpad, however. And the weight of the fully-loaded Saturn V gives us an idea of how massive an object a self-propelled machine can move: 3,000 tonnes. Because, to nobody’s surprise, NASA knows the weight of every Apollo rocket at liftoff. Because it’s mildly (massively) important to know the mass of the rocket you’re launching, because that can make the difference between “rocket in a low orbit” and “really dangerous and expensive airplane flying really high until it explodes with three astronauts inside.”

Standard
Uncategorized

Supersonic Submarine

I seem to be obsessed with submarines, which isn’t something I realized until now. There’s nothing worse than a stealth obsession.

Anyway: sound has a speed. That speed depends on the properties of the medium. The speed of sound in air is about 330 meters per second. The speed of sound in olive oil is 1430 meters per second (Yes, somebody measured that, and here’s the proof, along with some other handy tables of speeds of sound in other materials). The speed of sound in aluminum is 6320 m/s. The speed of sound in beryllium is an amazing 12,900 m/s, which is not only faster than the International Space Station’s orbital velocity, it’s actually faster than Earth escape velocity.

The speed of sound in seawater is a much tamer 1500 m/s (the exact speed depends on depth (meaning pressure), temperature, and salinity). That got me thinking that, since I’ve abandoned the submarine car in favor of an actual submarine, why not make it a supersonic submarine?

There’s nothing in the laws of physics to stop me. There’s no physical reason that makes it impossible to move through water faster than the speed of sound in water. There are plenty of engineering reasons, but we’ll get to those in a second.

The interesting thing about moving supersonically in water is that water isn’t a gas. Air isn’t very dense, it’s compressible, and it doesn’t have many phase transitions readily available. It can liquefy if you compress it while keeping it cool, and it can turn to plasma if you compress it and let it heat up. But when you’re talking about supersonic vehicles, the air heats up rather than cooling down. It heats up a lot. The air around re-entering spacecraft turns into plasma.

Water, on the other hand, is much denser (pure water is about 1,000 kilograms per cubic meter), and compared to air, is almost incompressible. Water is about five orders of magnitude less compressible than air. This means that a whole slew of new phenomena happen in supersonic submarines that don’t happen in supersonic aircraft. The coolest one is cavitation.

Cavitation is what happens when, for one reason or another, the pressure on a volume of water drops below that water’s vapor pressure, or when something moves through the water so fast that the cavity in the water doesn’t have time to close around the object. There are all sorts of cool videos of cavitation on the Internet, but I think this is my favorite:

Ain’t that beautiful? Many thanks to The Slow Mo Guys and Smarter Every Day for filming that, and for doing exactly what I would have done if I had access to one of those slow-motion cameras.

Notice the large cavity that opens behind the bullet as it travels. The spherical cavity around the gun’s muzzle is from the blast of hot, escaping gas, but the sort of sausage-shaped bubble attached to the bullet is pure cavitation. The bullet slams the water aside so hard that, even though water is usually very good at closing voids within itself, it has no choice but to stand aside for a fraction of a second. For the brief period that it exists, that cavity is full of a little water vapor that evaporated from the surface and not much else, and as soon as the moving water has deposited its inertia in the stationary water around it, pressure wins out and makes the bubble collapse again.

But a cavitation bubble isn’t the same thing as a sonic boom. The bullet in that video was fired from a revolver. Since I don’t know the make of the revolver or what kind of ammunition it was using, I don’t know the muzzle velocity, but if we assume it was in the same class as a Ruger firing .357 Magnums, then the muzzle velocity would have been around 450 meters per second. Not faster than the speed of sound in water. Barely faster than the speed of sound in air.

Either way, we know that our supersonic submarine would cut quite a large hole in the water as it flew. (Flew? That doesn’t sound right. What is the right verb for a submarine’s movement? Somebody let me know. That’s gonna bother me now). It would also, true to acoustics, generate a sonic boom. I would guess that this sonic boom would be more than enough to rupture the eardrums of unlucky divers who happened to get in its way, and that the drop in pressure after the shock would probably create a whole swarm of smaller cavitation bubbles in its wake. And because the water that evaporated from the surface of the cavity would be moving roughly in the same direction as the cavity (relative to the submarine), the submarine would likely create a second, much slower-moving sonic boom in the water vapor. After the submarine passed, the cavity would expand to a maximum size, then slam closed, possibly heating the gases inside enough to glow. This is called sonoluminescence, and is very impressive:

After the collapse, you’d have a soup of very hot bubbles and very hot water vibrating and rising to the surface. The water would be hot from the collapse of the cavity. Here’s about what our supersonic sub would look like:

Supersonic Submarine

And, from a practical perspective, it would be hot for another reason. To break the speed of sound in water, you’d need the engine power of 4 Saturn V moon-rockets.

Yes, really. This comes from the basic drag formula I’ve been using all along:

drag force = (1/2) * (density of medium) * (velocity of object)^2 * (drag coefficient (depends on shape and texture of object)) * (projected or cross-sectional area of the object)

I have no idea where we’re going to get a rocket four times as powerful as a Saturn V. I guess we could just make the end of the submarine a parabolic reflector and drop antimatter out the back and ride the blast of steam, but I hear people get pretty upset if you go dumping antimatter in the ocean. Especially if they happen to be swimming behind you.

But that’s the least of our worries. At 1500 meters per second, the front of the submarine would be experiencing pressures ten times greater than at the bottom of the Mariana Trench. Not unsurvivable, but between the pressure of the water against the front of the hull and the cavitation going on around the back of the hull, the whole thing’s going to need to be a pressure vessel. That’s going to be one heavy submarine. While we’re pretending that a submarine-sized craft could produce 141 million Newtons of thrust for an extended period, why not just turn the bastard into a rocket? Besides, I’m afraid that if I tooled around underwater making watery sonic booms, I might upset an octopus, and I have a deep and inexplicable affection for octopuses.

But before we stop doing weird things underwater, there’s a question that demands to be answered: if our supersonic submarine would need four times the thrust of a Saturn V to travel through the water, how fast would the Saturn V itself be able to go underwater. Well, input some reasonable values into the drag equation, set the drag equation equal to 35 million newtons (the Saturn V’s first-stage thrust), and we have:

41.2 meters per second

or

92 miles per hour

or

148 kilometers per hour

The Saturn V is one of the most powerful rockets ever built. And, under ideal conditions, it could manage 92 miles an hour underwater. I have driven my car faster than that. A good baseball pitcher or cricket bowler can throw faster than that. I guess the people at NASA weren’t planning for the possibility that the space between the Earth and Moon might inexplicably be filled with seawater. The fools.

But, although 92 miles an hour is not a very impressive speed, especially by rocket standards, you have to admit, it’d be one hell of a sight to behold:

SaturnV

Now that‘s a fucking torpedo!

Standard