biology, Dragons, thought experiment

Even More Dragonfire

Because I like dragons and I can’t help myself. Don’t worry. This one won’t be nearly as long as my usual posts about dragons. If anything, it’s more to show the thought process that goes into my thought experiments.

Let’s dispense with the notion of dragonfire hotter than the surface of the sun, and with biologically-produced antimatter. Let’s pretend that dragons are made of fairly ordinary flesh. They breathe fire from their mouths (naturally), so they’re going to have to be careful not to burn their tongues off. Let’s assume they have funny saliva glands that mist their mucous membranes to stop them getting scalded off by direct contact with hot air and fire. There’s still thermal radiation to deal with.

According to NOAA (who usually talk about weather, but have, in this case, started talking about fire), exposure to thermal radiation at an intensity of 10 kilowatts per square meter will cause severe pain after 5 seconds and second-degree burns (nasty blisters) after 14 seconds. With that in mind, I want to find out how hot dragonfire can be before its thermal radiation is too much for a dragon’s mouth to handle.

Well, let’s assume a dragon’s mouth is a cylinder 1 meter long and 30 centimeters in diameter. Multiply the circumference of that cylinder by its length to get its surface area (minus the ends), and then multiply the area by 10 kilowatts per square meter to get the maximum radiant power that can reach the mucous membranes. The result: 9.425 kilowatts. Now, let’s model the jet of fire as a cylinder (again, without ends) 1 centimeter in diameter and 1 meter long. That cylinder can’t emit more than 9.425 kilowatts as radiant heat. Divide 9.425 kilowatts by the cylinder’s surface area. To stay below 9.425 kilowatts, the jet of flame can’t emit at an intensity higher than 300 kilowatts per square meter. Apply the Stefan-Boltzmann law in reverse to get an estimate of what temperature gas radiates at 300 kilowatts per square meter. That comes out to a disappointing 1,517 Kelvin, which is cooler than the average wood fire.

I’m not satisfied with that, so I’m going to cheat. Sort of. I’m going to assume that the dragon has a bone in its fire-spewing orifice that acts like a supersonic rocket nozzle, which allows it to emit a very narrow, fast-moving stream of burning gas. The upshot of this is that the jet becomes narrower than that of a pressure washer: 1 mm in diameter throughout its transit through the mouth. That’s a bit more encouraging: 2,697 Kelvin, about the temperature of a hydrogen-air flame (which means we can just use hydrogen as the fuel). It’s still nowhere as hot as I want it to be, but I don’t think Sir Knight is going to be walking away from this one.

We could, of course, push the temperature up by taking into account the fact that the dragon’s mouth isn’t a perfect blackbody, and reflects some of the radiation, but like I said, this isn’t a full post. I just wanted to show you guys how I flesh out an idea.

Stay safe out there. And don’t try to breathe fire.

Standard
Uncategorized

The Biology of Dragonfire

In a recent post, I decided that plasma-temperature dragonfire might be feasible, from a physics standpoint. There’s one catch: my solution required antimatter (and quite a bit of it). Antimatter does occur naturally in the human body, though. An average human being contains about 140 milligrams of potassium, which we need to run important stuff like nerves and heart muscle. The most common isotope of potassium is the stable potassium-39, with a few percent potassium-41 (also stable), and a trace of potassium-40, which is radioactive. (It’s the reason you always hear people talking about radioactive bananas. It also means that oranges, potatoes, and soybeans are radioactive. And cream of tartar is the most radioactive thing in your kitchen, unless you’ve got a smoke detector in there.)

Potassium-40 almost always decays by emitting a beta particle (transforming itself into calcium-40) or by cannibalizing one of its own electrons (producing argon-40). But about one time in 100,000, one of its protons will transform into a neutron, releasing a positron (the antimatter counterpart to the electron) and an electron neutrino. The positron probably won’t make it more than a few atoms before it attracts a stray electron and annihilates, producing a gamma ray. But that doesn’t matter, for our purposes. What matters is that there are natural sources of antimatter.

Unfortunately, potassium-40 is about the worst antimatter source there is. For one thing, its half-life is over a billion years, meaning it doesn’t produce much radiation. And, like I said, of that radiation, only 0.001% is in the form of usable positrons.

Luckily, modern medicine gives us another option. Nuclear medicine, specifically (which, by the way, is just about the coolest name for a profession). As you may have noticed by the fact that you don’t vomit profusely every time you go outside, human beings are opaque. We can shoot radiation or sound waves through them to see what their insides look like, but that usually only gives us still pictures, and it doesn’t tell us, for instance, which organs are consuming a lot of blood, and therefore might contain tumors. For that, we use positron-emission tomography (PET) scanners. In PET, an ordinary molecule (like glucose) is treated so that it contains a positron-emitting atom (most often fluorine-18, in the case of glucose). The positron annihilates with an electron, and very fancy cameras pick up the two resulting gamma rays. By measuring the angles of these gamma rays and their timing, the machine can decide if they’re just stray gamma rays or if they, in fact, emerged from the annihilation of a positron. Science is cool, innit?

One of the other nucleides used in PET scanning is carbon-11. Carbon-11 is just about perfect, as far as biological sources of antimatter go. It’s carbon, which the body is used to dealing with. It decays almost exclusively by positron emission. It decays into boron, which isn’t a problem for the body. And its half-life is only 20 minutes, which means it’ll produce antimatter quickly.

There’s one major catch, though. Whereas potassium-40 occurs in nature, carbon-11 is artificial, produced by bombarding boron atoms with 5-MeV protons from a particle accelerator. I may, however, have found a way around this. To explain, here’s a picture of a dragon:

Whole Dragon

No, those aren’t labels for weird cuts of meat. They’re to explain the pictures that follow.

Living things contain a lot of free protons. They’re the major driver of the awesome mechanical protein ATP synthase, which looks like this:

(The Protein DataBank is awesome!)

Sorry. I just really like the way PDB renders its proteins.

Either way, we know organisms can produce concentrations of protons. But in order to accelerate a proton, you need a powerful electric field. The first particle accelerators were built around van de Graaff generators, which can reach millions of volts. Somehow, I doubt a living creature can generate a megavolt.

Actually, you might be surprised. The electric eel (and the other electric fish I’m annoyed my teachers never told me about) produces is prey-stunning shock using cells called electroctyes. These are disk-shaped cells that act a little bit like capacitors. They charge up individually by accumulating concentrations of positive ions, and then they discharge simultaneously. The ions only move a little bit, but there are a lot of ions moving at the same time, which produces a fairly powerful electric current that generates a field that stuns prey. The fact that organisms can produce potential differences large enough to do this makes me hopeful that maybe, just maybe, a dragon could do the same on a nanometer scale, producing small regions of megavolt or gigavolt potential that could accelerate protons to the energies needed to turn boron-bearing molecules into carbon-11-bearing molecules. Here’s how that might work:

Bio-linac

There’s going to have to be a specialized system for containing the carbon-11 molecules, transporting them rapidly, and shielding the rest of the body from the positrons that inevitably get loose during transport, but if nature can invent things like electric eels and bacteria with built-in magnetic nano-compasses, I don’t think that’s too big a stretch.

The production of carbon-11 is going to have to happen as-needed, because it’s too radioactive to just keep around. I imagine it’d be part of the dragon’s fight-or-flight reflex. Here’s how I imagine the carbon-11 molecules will be stored:

Storage Zone

Note the immediate proximity to a transport duct: when you’ve got a living creature full of radioactive carbon, you want to be able to get that carbon out as soon as you can. Also note the radiation shielding around the nucleus. That would, I imagine, consist of iron nanoparticles. There might also be iron nanoparticles throughout the cytoplasm, to prevent the gamma rays from lost positrons from doing too much tissue damage.

Those positrons are going to have to be stored in bulk once they’re produced, though. This problem is the hardest to solve, and frankly, I feel like my own solution is pretty handwave-y. Nonetheless, here’s what I came up with: a biological Penning trap:

Usage Zone

These cells are going to require a lot of brand-new biological machinery: some sort of bio-electromagnet, for one (in order to produce the magnetic component of the Penning trap). For another, cells that can sustain a high electric field indefinitely (for the electric component). Cells that can present positron-producing carbon-11 atoms while simultaneously maintaining a leak-proof capsule and a high vacuum in which to store the positrons. And cells that can concentrate high-mass atoms like lead, because there’s no way to keep all the positrons contained. That’s probably wishful thinking, but hey, nature invented the bombardier beetle and the cordyceps zombie-ant fungus, so maybe it’s not too out there.

The process of actually producing the dragonfire is very simple, by comparison. The dragon vomits water rich in iron or calcium salts (or maybe just vomits blood). The little storage capsules open at the same time, making gaps in their fields that let the positrons stream out. The positrons annihilate with electrons in the fluid (hopefully not too close to the dragon’s own cells; this is another stretch in credibility). The gamma rays produced by the annihilation are scattered and absorbed by the water and the heavy elements in it, and by the time they exit the mouth, they’re on their way to plasma temperatures.

This is not, of course, the kind of thing nature tends to do. Evolution is a lazy process. It doesn’t find the best solution overall (because if you wanna talk about dominant strategies, having a built-in particle accelerator is up there with built-in lasers). It just finds the solution that’s better enough than the competitor’s solution to give the critter in question an advantage. So, although nature has jumped the hurdles to create bacteria that can survive radiation thousands of times the dose that kills a human on the spot, and weird things like bombardier beetles, insect-mind-controlling hairworms, and parasites that make snails’ eyestalks look like caterpillars so birds will eat them and spread the parasites, the leap to antimatter storage is probably asking a bit too much, unless we’re talking about some extremely specific evolutionary pressures.

Which is not to say that nature couldn’t produce something almost as awesome as plasma-temperature dragonfire. Let’s return once again to the bombardier beetle. The bombardier beetle has glands that produce a soup of hydrogen peroxide and quinones. Hydrogen peroxide likes to decompose into water and oxygen, which releases a fair bit of heat (which is why it was used as a monopropellant in early spacecraft thrusters). But at the beetle’s body temperature, the decomposition is too slow to matter. When threatened, however, the beetle pumps the dangerous soup into a chamber lined with peroxide-decomposing catalysts, which makes the reaction happen explosively, spraying the predator with a foul mix of steam, hot water, and irritating quinone derivatives. Here’s what that looks like:

So if nature can evolve something like that, is it too much of a stretch to imagine a dragon producing hydrogen-peroxide-laden fluid, mixing it with hydrogen gas, and vomiting it through a special orifice along with some catalyst that ignites the mixture into a superheated steam blowtorch like the end of a rocket nozzle? Well, look at that beetle! Maybe it’s not as far-fetched as it seems…

Standard
Uncategorized

The Physics of Dragonfire

Last year, I wrote a post about the physics of the plasma-temperature dragonfire from Dwarf Fortress. Today, because my frontal lobes are screwed on backwards, I wanna work out whether or not biology could produce a plume of 20,000-Kelvin plasma without stretching credibility too far. I have a hunch that the answer will be disappointing, but my hunches are usually wrong. Must be those faulty frontal lobes.

The first thing we need to work out is how much power we’re going to need to heat all that air. Let’s say dragonfire comes out of the dragon’s mouth at 50 meters per second (111 mph, about as fast as a sneeze or a weak tornado). As a rough approximation, let’s assume that a dragon’s mouth has a cross-sectional area of about 0.0600 square meters (about the area of a piece of ordinary printer paper). This is one of those nice situations where we can just multiply our two numbers together and get what we’re looking for: a flow rate of 3.120 cubic meters per second.

So here’s what we know so far: we’ve got a dragon breathing 3.120 cubic meters of air every second. That air has to be heated from 300 Kelvin (roughly room temperature) to 20,000 Kelvin. The specific heat capacity of air is close to 1,020 Joules per kilogram Kelvin over a pretty wide range of temperatures, so we’ll assume that holds even when the air turns to plasma. That means that every second, our dragon has to put out 79.96 million Joules, or 22.2 kilowatt-hours. But we’re not talking about hours here. We’re talking per second. That’s 79.96 megawatts, which is almost twice the power produced by the GE CF6-5 jet engines that power many airliners. That’s a lot of power.

But, much to my surprise, there are some fuels that can deliver that kind of power. Compressed hydrogen burning in pure oxygen could do it. Except I’m basing that assumption entirely on the power required. There’s a lot more physics involved than that. The highest temperature that a combustion reaction can reach, assuming no heat loss, is called the adiabatic flame temperature, and although this is an impressive 3,500 Kelvin for a well-mixed oxy-hydrogen flame, that’s nowhere near the 20,000 Kelvin we need. The only fuels with higher energy densities than hydrogen are things like plutonium and antimatter, and for once, I’m going to be restrained and try not to resort to antimatter if I don’t have to. Let’s see if there’s another way to do it.

In my previous post on dragonfire, I described Dwar Fortress’s dragon’s-breath as a medieval welding arc. So to hell with it–why not use an actual welding arc to heat the air? Well, it turns out that something like this already exists. It’s called an arcjet. Like VASIMR, it’s one of those electric-thruster technologies that has yet to get its day in the spotlight. But arcjets have found another purpose in life: allowing space agencies to test their reentry heat shields on the ground. Here’s a strangely satisfying video of one such arcjet heater being tested on an ordinary metal bolt:

That certainly looks like how my brain tells me dragonfire should look, but from a little research, it seems that the Johnson Space Center’s arcjet only puts out something like 2 megawatts, thirty-five times less than the 79 we need. According to these people, the arc in an arcjet thruster can reach the 20,000 Kelvin we need, but it seems pretty likely that the actual plume temperature is going to be a lot lower.

And besides, our dragon’s powerplant has to be (relatively) biology-friendly, since it has to be inside a living creature. The voltages and currents needed to run an arcjet would probably make our dragon drop dead or explode or both.

So, as much as I hate to do it (I’m kidding; I love to do this) I’ve gotta turn to antimatter.

Antimatter is the ultimate in fuel efficiency. Because almost all of the universe is made of matter (and nobody really knows why), if you release antimatter into the world, it’ll very quickly find its matching non-anti-particle and annihilate, producing gamma rays, neutrinos, and weird particles like kaons. The simplest case is when an electron meets a positron (its antiparticle). The result is (almost) always two gamma rays with an energy of 511 keV, meaning a wavelength of 2.4 picometers, which is right on the border between really high-energy X-rays and really low-energy gamma rays.

This presents yet another problem: hard x-rays and soft gamma rays are penetrating radiation. They pass through air about as well as bullets pass through water (which isn’t an amazing distance, I’ll admit, but I’m still not about to sit in a pool and let someone shoot at me). At 511 keV and ordinary atmospheric density, the mass attenuation coefficient (which tells you what fraction of the radiation in question gets absorbed after traveling a certain distance) is in the neighborhood of 0.013 per meter, which means a beam of 511 keV photons will get 1.3% weaker for every meter it travels.

Working out just what fraction of these photons need to be absorbed is a bit beyond me. If the radiation has to be 1,000 times weaker, it’ll have to pass through 1.6 meters of air. That sounds to me like it’d be enough to burn our dragon’s tongue right off. And indeed, if we run the equation a different way, we see that, after traveling through 30 centimeters (about a foot) of air, the gamma rays will still have 25% of their original strength. I’m trying very hard not to imagine what burning dragon teeth would smell like.

But there’s no reason our dragon has to be making its death-dealing plasma out of air. Water is the most common molecule in biology, so why not use that instead? A 511 keV photon can still travel over 10 centimeters in water, but that’s a heck of a lot better than the 150 centimeters we were looking at before.

Of course, we can add a dash of metal atoms to the mix to absorb more of the x-rays and protect our poor dragon from its own flame. The heaviest metal found in organisms in large quantities is iron, usually in the form of hemoglobin. So let’s just throw some hemoglobin in that water, handwave away how the dragon is producing so many positrons, and call this experiment a success.

Well, it’s not a total success, since what I just described is essentially a dragon vomiting a jet of blood and then turning that into scalding-hot plasma. No wonder everybody’s scared of dragons…

Standard
Uncategorized

Dragonfire

So, I’ve been playing a lot of Dwarf Fortress lately (which goes a long way to explain the lack of new posts). If you don’t know, Dwarf Fortress is a bizarre and ridiculously detailed fantasy game where you send a squad of dwarves into the wilderness to dig for gems and ore and try to stay alive as long as possible. That’s harder than you might think, since all dwarves are born alcoholics who must have booze to function properly, they’re surrounded by horrible creatures that want them dead, the environment is harsh, and they’re…well, they’re a little dim.

I love Dwarf Fortress. I love it because the creators have put such an insane level of love and detail into it. For example, how many other fantasy games do you know where they actually use the specific heat of copper when calculating whether or not your armor is melting?

But one detail in particular caught my eye: Dwarf Fortress’s temperature system. Temperatures in Dwarf Fortress are, to quote the Wiki, “stored as sixteen-bit unsigned integers,” which means temperatures between 0 and 65,535. The cool thing is that Dwarf Fortress doesn’t use some wimpy unspecified temperature scale. There is a direct correspondence between Dwarf Fortress temperatures (measured in degrees Urist. Don’t ask.) and real temperatures. To convert from Dwarf Fortress temperatures to Kelvins, for instance, just do a little simple math: [Temperature in Kelvins] = ([Temperature in degrees Urist] – 9508.33) * (5/9) . As it turns out, the Urist scale is just the Fahrenheit scale shifted downward by 9968 degrees (which, incidentally, means you can go several thousand degrees below aboslute zero, but that’s an issue for another time).

Better yet, Dwarf Fortress has DRAGONS! I love dragons, far more than any twenty-six-year-old adult male probably should. I turn into a hyperactive eight-year-old boy when I think about dragons. And Dwarf Fortress combines two of my great loves: dragons, and being unnecessarily specific about things. Here’s a typical encounter between a human swordsman in bronze armor (the @ symbol; the graphics take some getting used to) and an angry dragon (the D symbol).

Dragon Fight 1

Round 1. FIGHT!

Dragon Fight 2

The dragon breathes fire. The human’s chainmail pants are now filled with poo.

Dragon Fight 3

The human is engulfed in dragonfire and begins burning almost immediately.

Dragon Fight Aftermath

To nobody’s surprise, the dragon wins. I’d also like to note that this dragon is a real jerk: while his poor prey was burning to death, it swooped in and knocked the human’s teeth out…

Dragon fights in Dwarf Fortress end very quickly. That’s because, as the wiki tells us, dragonfire has a temperature of 50,000 degrees Urist. Which translates to a horrifying 22,495.372 Kelvins (22,222.222 ºC, 40,032 ºF). That’s higher than the boiling point of lead. It’s higher than the boiling point of iron. It’s higher than the boiling point of tungsten, for crying out loud. In fact, it’s sixteen thousand degrees hotter than tungsten’s boiling point. Dwarf Fortress dragons don’t breathe fire like those wimpy Hollywood dragons. They breathe jets of freakin’ plasma. Plasma hotter than the surface of the sun. Plasma almost as hot as a lightning bolt.

With this in mind, we can take a scientific (and somewhat gruesome) look at what happened to our unfortunate human swordsman just now.

From the images above, let’s say the dragon’s plasma jet reached a maximum length of 10 meters before the dragon stopped spitting. Just before it struck our adventurer, it was spread out in a rough cone 10 meters long and 5 meters wide at the base. It was broiling away at a temperature of 22,500 Kelvin. When you’re working with absurd temperatures like this, the radiated heat and light do as much or more damage than the plasma itself. This kind of thing (unfortunately) also happens in more mundane circumstances: when high-voltage, high-current equipment shorts out, it can produce an arc flash, an electric discharge that produces a dangerous explosion, a deadly flash, a flare of plasma, and a shower of molten metal.

Arc flashes are horrifying. They’re a serious source of danger to electrical engineers. They’re also not terribly funny. But they give us an idea of the effects of dragonfire.

At a temperature of 22,500 Kelvin, the front surface of the fireball would radiate about 0.285 terawatts of energy. The formula for a blackbody spectrum tells us that the fireball will be brightest at a wavelength of 128.79 nanometers, which is in the far ultraviolet. That’s more energetic than the ultraviolet light from germicidal lamps, which is already more than enough to cause burns and damage the eyes. So our unlucky swordsman would be looking at instant UV flash-burns.

Lucky for him, he probably won’t have long to worry about those burns. The fireball is radiating at 1.453e10 watts per square meter. If we assume the swordsman knew he was about to fight a dragon and therefore put on some sort of bizarre medieval bronze spacesuit and polished it to a mirror finish. He’s still dead meat: copper, one of the main components of bronze (the other is most often tin) is a terrible reflector at the wavelengths in question here, bottoming out at around 30%. That means our foolish knight is still going to be absorbing 70% of the radiant heat, which will (given a long enough exposure) raise its temperature to around 20,500 Kelvin, more than hot enough to flash-vaporize the outer layers.

But if we’re nice and pretend the knight was smart enough to have his bronze armor coated with something decently reflective at all wavelengths (like ye olde dwarven electropolished electroplated aluminum), he would only absorb about 5% of the incident radiation. Well, bad news, sir knight: your armor’s still heating up to 7,600 Kelvin, which is much hotter than the surface of the sun.

Of course, producing a plume of 22,000-degree plasma takes a lot of energy (I’ll resist the urge to nitpick the biology of that), and even if we put that aside, according to the game’s own internal logic, dragonfire doesn’t hang around very long. Each in-game tick (in adventure mode or arena mode) lasts one second, and our bronze swordsman was only exposed to these ridiculous temperatures and irradiances for around 10 ticks, or 10 seconds. If we consider the fact that the plume of dragonfire is going to lose a lot of energy to radiation and thermal expansion, our knight probably wouldn’t evaporate right away. But he will probably wish to his randomly-generated deity that he did.

Metals are good conductors of heat, and copper is one of the most conductive metals, heat-wise. Therefore, although our knight only got exposed to that horrifying draconic welding arc for a few seconds, his armor’s going to soak up a lethal amount of heat from that exposure. Arc flashes, lightning, and nuclear explosions can cause second- and third-degree burns from just a few seconds’ exposure, so our night is going to be blind and scorched, and then he’s going to poach like an egg inside his armor.

Don’t worry, though–he probably won’t feel it. Unless he has superhuman willpower (and is therefore able to hold his breath while the rest of his body is bursting into flames), he’s going to take a panicked gasp, and that’ll put an end to his battle very, very quickly.

The inhalation of superheated gas kills very rapidly. The inhalation of gas at thousands of degrees (meaning: the dragon’s plume and every cubic centimeter of air in contact with it) kills instantly. So our knight would probably lose consciousness either instantly, or within 15 seconds, which is how long it takes you to pass out when your heart and/or lungs quit working. And what would be left? A knight cooked Pittsburgh rare, wrapped in a blanket of broken bronze welding slag.

So, if you think you’ve outgrown being scared of dragons, imagine this: a scaly reptilian horror older than a sequoia, fixing you with its piercing gaze and then spewing a jet of gas as hot and bright as a welding arc. That’s good–I didn’t need to sleep tonight, anyway…

Standard